Real-Time Criminal Network Analysis and Actionable Intelligence System. Python Centric model.
Python script designed for law enforcement to analyze communications among criminal stakeholders. The script will:
1. Connect to a database containing communication records and stakeholder information.
2. Analyze communications to detect patterns, hierarchies, and key actors (using network analysis).
3. Identify organizational structure (organigram) using graph analysis.
4. Generate actionable insights to help plan legal actions with a general attorney or judge.
5. Visualize the network for better understanding.
---
Requirements
Install necessary Python packages:
pip install mysql-connector-python pandas networkx matplotlib
---
Python Script
import mysql.connector
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
# Database connection parameters
DB_CONFIG = {
'host': 'localhost',
'user': 'your_username',
'password': 'your_password',
'database': 'criminal_network'
}
# Connect to the database
def connect_to_db():
try:
conn = mysql.connector.connect(**DB_CONFIG)
if conn.is_connected():
print("Connected to the database")
return conn
except mysql.connector.Error as e:
print(f"Error: {e}")
return None
# Fetch communication data
def fetch_data(conn):
query = """
SELECT
sender_id,
receiver_id,
message_type,
timestamp
FROM
Communications;
"""
stakeholders_query = """
SELECT
stakeholder_id,
full_name,
role,
risk_level
FROM
Stakeholders;
"""
communications = pd.read_sql(query, conn)
stakeholders = pd.read_sql(stakeholders_query, conn)
return communications, stakeholders
# Create and analyze communication network
def build_communication_network(communications, stakeholders):
G = nx.DiGraph()
# Add nodes (stakeholders)
for _, row in stakeholders.iterrows():
G.add_node(
row['stakeholder_id'],
full_name=row['full_name'],
role=row['role'],
risk_level=row['risk_level']
)
# Add edges (communications)
for _, row in communications.iterrows():
G.add_edge(
row['sender_id'],
row['receiver_id'],
message_type=row['message_type'],
timestamp=row['timestamp']
)
# Centrality analysis to identify key players
centrality = nx.degree_centrality(G)
top_actors = sorted(centrality.items(), key=lambda x: x[1], reverse=True)[:5]
hierarchy = nx.pagerank(G)
hierarchy_sorted = sorted(hierarchy.items(), key=lambda x: x[1], reverse=True)
key_actors = []
for actor in top_actors:
actor_data = stakeholders[stakeholders['stakeholder_id'] == actor[0]].iloc[0]
key_actors.append(f"{actor_data['full_name']} (Role: {actor_data['role']}, Risk: {actor_data['risk_level']})")
return G, key_actors, hierarchy_sorted
# Visualize the communication network
def plot_network(G):
pos = nx.spring_layout(G)
risk_colors = {'Low': 'green', 'Medium': 'orange', 'High': 'red', 'Critical': 'darkred'}
node_colors = [
risk_colors[G.nodes[n]['risk_level']]
for n in G.nodes
]
plt.figure(figsize=(12, 8))
nx.draw(
G, pos, with_labels=True,
node_color=node_colors,
node_size=800,
font_size=10,
font_color='white',
edge_color='#999999'
)
plt.title("Criminal Communication Network")
plt.show()
# Generate action plan for legal strategy
def generate_action_plan(key_actors, hierarchy):
print("\n--- Action Plan ---\n")
# Identify top leaders
print("🔹 Top Criminal Leaders:")
for actor in hierarchy[:3]:
print(f" - {actor[0]} (Influence score: {actor[1]:.2f})")
# Identify key actors for legal action
print("\n🔸 Key Actors for Legal Action:")
for actor in key_actors:
print(f" - {actor}")
# Suggested actions
print("\n✅ Suggested Actions:")
print(" 1. Interrogate top leaders and high-risk actors.")
print(" 2. Target key communicators to disrupt network operations.")
print(" 3. Coordinate with the general attorney to issue warrants.")
print(" 4. Monitor communication for signs of retaliation.")
# Main execution
def main():
conn = connect_to_db()
if conn:
try:
communications, stakeholders = fetch_data(conn)
G, key_actors, hierarchy = build_communication_network(communications, stakeholders)
plot_network(G)
generate_action_plan(key_actors, hierarchy)
finally:
conn.close()
if __name__ == "__main__":
main()
---
Database Schema Example
Here’s a sample schema that the script expects:
Stakeholders Table
CREATE TABLE Stakeholders (
stakeholder_id INT PRIMARY KEY AUTO_INCREMENT,
full_name VARCHAR(255),
role VARCHAR(100),
risk_level ENUM('Low', 'Medium', 'High', 'Critical')
);
Communications Table
CREATE TABLE Communications (
communication_id INT PRIMARY KEY AUTO_INCREMENT,
sender_id INT,
receiver_id INT,
message_type VARCHAR(100),
timestamp TIMESTAMP,
FOREIGN KEY (sender_id) REFERENCES Stakeholders(stakeholder_id),
FOREIGN KEY (receiver_id) REFERENCES Stakeholders(stakeholder_id)
);
---
How It Works
1. Connects to the database and pulls communication and stakeholder data.
2. Builds a communication graph with networkx for hierarchy and centrality analysis.
3. Identifies key actors based on centrality and importance.
4. Generates an action plan based on the analysis.
5. Visualizes the network using matplotlib to show connections and hierarchy.
---
Example Output
--- Action Plan ---
🔹 Top Criminal Leaders:
- Leader A (Influence score: 0.85)
- Operator B (Influence score: 0.75)
- Coordinator C (Influence score: 0.72)
🔸 Key Actors for Legal Action:
- John Doe (Role: Leader, Risk: Critical)
- Jane Smith (Role: Operator, Risk: High)
✅ Suggested Actions:
1. Interrogate top leaders and high-risk actors.
2. Target key communicators to disrupt network operations.
3. Coordinate with the general attorney to issue warrants.
4. Monitor communication for signs of retaliation.
---
Why This Script Works
✅ Uses network analysis to detect hierarchies and key actors
✅ Identifies high-risk connections and vulnerabilities
✅ Provides a clear action plan to present to legal authorities
✅ Generates visuals to simplify complex networks
🚀 Next Steps
Add more complex analysis (e.g., clustering, hidden nodes)
Integrate real-time monitoring for ongoing operations
Expand the action plan based on specific law enforcement protocols
Enhanced Python script that includes real-time monitoring, complex cluster analysis, hidden node detection, and law enforcement protocols. This version will:
1. Connect to the database and monitor real-time communications.
2. Use network clustering to identify sub-networks and operational cells.
3. Apply hidden node detection to spot indirect influencers.
4. Flag anomalies and potential security threats.
5. Include law enforcement and criminal justice protocols for actionable intelligence and legal compliance.
---
Requirements
Install additional libraries:
pip install mysql-connector-python pandas networkx matplotlib scikit-learn
---
Python Script
import mysql.connector
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import time
import threading
# Database connection parameters
DB_CONFIG = {
'host': 'localhost',
'user': 'your_username',
'password': 'your_password',
'database': 'criminal_network'
}
# Connect to the database
def connect_to_db():
try:
conn = mysql.connector.connect(**DB_CONFIG)
if conn.is_connected():
print("Connected to the database")
return conn
except mysql.connector.Error as e:
print(f"Error: {e}")
return None
# Fetch communication and stakeholder data
def fetch_data(conn):
query = """
SELECT sender_id, receiver_id, message_type, timestamp
FROM Communications;
"""
stakeholders_query = """
SELECT stakeholder_id, full_name, role, risk_level
FROM Stakeholders;
"""
communications = pd.read_sql(query, conn)
stakeholders = pd.read_sql(stakeholders_query, conn)
return communications, stakeholders
# Build and analyze communication network
def build_network(communications, stakeholders):
G = nx.DiGraph()
# Add nodes (stakeholders)
for _, row in stakeholders.iterrows():
G.add_node(
row['stakeholder_id'],
full_name=row['full_name'],
role=row['role'],
risk_level=row['risk_level']
)
# Add edges (communications)
for _, row in communications.iterrows():
G.add_edge(
row['sender_id'],
row['receiver_id'],
message_type=row['message_type'],
timestamp=row['timestamp']
)
# Centrality analysis to identify key players
centrality = nx.degree_centrality(G)
key_actors = sorted(centrality.items(), key=lambda x: x[1], reverse=True)[:5]
# Cluster analysis to detect hidden networks
cluster_analysis(G)
# Hidden node detection
hidden_nodes = detect_hidden_nodes(G)
return G, key_actors, hidden_nodes
# Cluster analysis using KMeans
def cluster_analysis(G):
adjacency_matrix = nx.to_numpy_matrix(G)
n_clusters = 3
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
labels = kmeans.fit_predict(adjacency_matrix)
for i, node in enumerate(G.nodes):
G.nodes[node]['cluster'] = labels[i]
print("\n🔍 Detected Clusters:")
for i in range(n_clusters):
cluster_members = [n for n in G.nodes if G.nodes[n]['cluster'] == i]
print(f" - Cluster {i + 1}: {cluster_members}")
# Detect hidden nodes through indirect connections
def detect_hidden_nodes(G):
hidden_nodes = []
for node in G.nodes:
successors = set(G.successors(node))
predecessors = set(G.predecessors(node))
# If node has many indirect connections, it's likely a hidden node
if len(successors) > 3 and len(predecessors) > 3:
hidden_nodes.append(node)
if hidden_nodes:
print("\n⚠️ Hidden Nodes Detected:")
for node in hidden_nodes:
print(f" - {G.nodes[node]['full_name']} (Potential Operator)")
else:
print("\n✅ No Hidden Nodes Detected.")
return hidden_nodes
# Real-time monitoring function
def monitor_communications():
conn = connect_to_db()
if not conn:
return
try:
last_checked = None
while True:
# Fetch latest communications
communications, stakeholders = fetch_data(conn)
if last_checked:
new_data = communications[communications['timestamp'] > last_checked]
if not new_data.empty:
print("\n🚨 New Communication Detected:")
for _, row in new_data.iterrows():
sender = stakeholders[stakeholders['stakeholder_id'] == row['sender_id']].iloc[0]
receiver = stakeholders[stakeholders['stakeholder_id'] == row['receiver_id']].iloc[0]
print(f" - {sender['full_name']} → {receiver['full_name']} ({row['message_type']})")
G, key_actors, hidden_nodes = build_network(communications, stakeholders)
plot_network(G)
generate_action_plan(G, key_actors, hidden_nodes)
last_checked = communications['timestamp'].max()
time.sleep(10) # Check every 10 seconds
finally:
conn.close()
# Action plan with legal protocols
def generate_action_plan(G, key_actors, hidden_nodes):
print("\n--- Action Plan ---\n")
# Identify key actors for targeted action
print("🔹 Key Actors for Legal Action:")
for actor in key_actors:
node = G.nodes[actor[0]]
print(f" - {node['full_name']} (Role: {node['role']}, Risk: {node['risk_level']})")
if hidden_nodes:
print("\n⚠️ Hidden Nodes for Surveillance:")
for node in hidden_nodes:
data = G.nodes[node]
print(f" - {data['full_name']} (Role: {data['role']})")
print("\n✅ Recommended Actions:")
print(" 1. Secure judicial authorization for surveillance and wiretapping.")
print(" 2. Conduct targeted interrogations and surveillance.")
print(" 3. Coordinate with the attorney general to approve warrants.")
print(" 4. Monitor hidden nodes and high-risk clusters.")
# Plot communication network
def plot_network(G):
pos = nx.spring_layout(G)
risk_colors = {'Low': 'green', 'Medium': 'orange', 'High': 'red', 'Critical': 'darkred'}
node_colors = [risk_colors[G.nodes[n]['risk_level']] for n in G.nodes]
plt.figure(figsize=(12, 8))
nx.draw(G, pos, with_labels=True, node_color=node_colors, node_size=800, font_size=10, font_color='white')
plt.title("Criminal Communication Network")
plt.show()
# Main execution with real-time monitoring
def main():
thread = threading.Thread(target=monitor_communications)
thread.start()
if __name__ == "__main__":
main()
---
How It Works
✅ Real-time monitoring checks for new communications every 10 seconds.
✅ Uses KMeans clustering to detect operational cells.
✅ Detects hidden nodes based on indirect connectivity patterns.
✅ Identifies key actors and hierarchical structure using centrality analysis.
✅ Provides an action plan based on criminal justice protocols.
---
Legal Protocols Included
✔️ Judicial Authorization – Ensure warrants are obtained for surveillance.
✔️ Attorney General Coordination – Plan actions with legal authorities.
✔️ Compliance with Due Process – No illegal searches or wiretaps.
✔️ Surveillance Oversight – Establish proper oversight mechanisms.
---
Example Output
🚨 New Communication Detected:
- John Doe → Jane Smith (Encrypted Message)
🔹 Key Actors for Legal Action:
- John Doe (Role: Leader, Risk: Critical)
✅ Recommended Actions:
1. Secure judicial authorization for surveillance and wiretapping.
2. Conduct targeted interrogations and surveillance.
3. Coordinate with the attorney general to approve warrants.
🚀 Next Steps
Add machine learning to detect behavior patterns.
Expand clustering to detect multi-layered cells.
Integrate with external intelligence feeds.
Comments
Post a Comment